Neural networks

Results: 3500



#Item
151

Presented at AAAI-16 conference, February 12-17, 2016, Phoenix, Arizona USA Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks ´ ska and Ingmar Posner Peter Ondruˇ Mobile Robotics Group, University of

Add to Reading List

Source URL: www.robots.ox.ac.uk

- Date: 2016-02-12 18:04:19
    152

    Longitudinal Analysis of Discussion Topics in an Online Breast Cancer Community using Convolutional Neural Networks Shaodian Zhang1 , Edouard Grave1 , Elizabeth Sklar2 and No´emie Elhadad1 1 Columbia University, New Yor

    Add to Reading List

    Source URL: arxiv.org

    - Date: 2016-04-07 21:05:45
      153

      Deep Taylor Decomposition of Neural Networks Gr´egoire Montavon1 Sebastian Bach2 Alexander Binder3 Wojciech Samek2,5

      Add to Reading List

      Source URL: icmlviz.github.io

      - Date: 2016-07-22 05:35:28
        154

        Analyzing and Validating Neural Networks Predictions Alexander Binder1 Wojciech Samek2,5 Gr´egoire Montavon3 Sebastian Bach2

        Add to Reading List

        Source URL: icmlviz.github.io

        - Date: 2016-07-22 05:35:28
          155

          Neural networks Feedforward neural network - multilayer neural network ARTIFICIAL NEURON 1

          Add to Reading List

          Source URL: dl.dropboxusercontent.com

            156

            ISSCCSESSION 14 / NEXT-GENERATION PROCESSINGEyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

            Add to Reading List

            Source URL: www.rle.mit.edu

            - Date: 2016-02-03 01:33:12
              157

              Inversion of Feedforward Neural Networks: Algorithms and Applications CRAIG A. JENSEN, RUSSELL D. REED, ROBERT J. MARKS, II, FELLOW, IEEE, MOHAMED A. EL-SHARKAWI, FELLOW, IEEE, JAE-BYUNG JUNG, ROBERT T. MIYAMOTO, GREGORY

              Add to Reading List

              Source URL: marksmannet.com

                158

                Neural networks Conditional random fields - factors, sufficient statistics and linear CRF 0) b

                Add to Reading List

                Source URL: dl.dropboxusercontent.com

                  159

                  Neural networks Training neural networks - parameter gradient P MACHINE LEARNING

                  Add to Reading List

                  Source URL: dl.dropboxusercontent.com

                    160

                    Detection and Classification of Acoustic Scenes and EventsSeptember 2016, Budapest, Hungary CP-JKU SUBMISSIONS FOR DCASE-2016: A HYBRID APPROACH USING BINAURAL I-VECTORS AND DEEP CONVOLUTIONAL NEURAL NETWORKS

                    Add to Reading List

                    Source URL: www.cs.tut.fi

                    - Date: 2016-08-30 06:05:43
                      UPDATE